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A New Approach to Fire Detection Algorithms based on the Hidden Markov Model

Abstract

In this paperthe theoryandsomeexperimentalresultsof a new approachto

fire detectionalgorithmsarediscussed.The algorithmis basedon a signal

classificationprinciple,which is widely usedin the field of speechrecogni-

tion. The sensorsignalsaretransformedinto appropriatefinite time series.

Thetransformationis donein a preprocessingstepthatextracta suitablese-

quencefrom the signalsto be classified. The time seriesaremodeledby a

HiddenMarkov Model (HMM). Theclassificationof a recognizedsequence

is thefinal stepwith respectto thedecisionmakingprocess.

1 Introduction

Advancesin semiconductortechnologyhave influencedthedevelopmentof fire detection

algorithmsto a high degreein recentyears.Theuseof microprocessorsin fire detection

devicesis nearlystate-of-the-art.Improvementof detectivity hasbeenachievedin modern

fire detectionsystemsindependentlyof thedesignschemewith respectto centralor dis-

tributedintelligence.Implementationof improveddetectionalgorithmsleadsto reduced

falsealarmratesandgooddetectionfeaturesin comparisonwith the classicalthreshold

detector.

Modernfire detectionalgorithmsareoften basedon a fuzzy logic or a neuralnetwork

approach. They might include somesort of featureextraction methodsappliedto the

sensorsignals.

In thefollowing wewill introducetheconceptof statisticalmodelsof sequentialdatawith

respectto thefire detectionproblem.



2 Hidden Markov Models

Let usconsideranurn–and–ballsystem[1], [2]. WeassumethatthereareN (large)glass

urns in a room. Within eachis a large quantityof coloredballs. ThereareM distinct

colorsof theballs. Thephysicalprocessto obtainobservationsis asfollows. A genius

is in theroom,and,accordingto somerandomprocedure,it choosesaninitial urn. From

this urn, a ball is chosenat random,and its color is recordedas the observation. The

ball is thenreplacedin the urn from which it wasselected.A new urn is the selected

accordingto therandomselectionprocedureassociatedwith thecurrenturn,andtheball

selectionprocessis repeated.Theentireprocessgeneratesa finite observationsequence

of colors,which we would like to modelastheobservableoutputof anHiddenMarkov

Model (HMM).

Obviously, the simplestHMM that correspondsto the urn–and–ballprocessis one in

which eachstatecorrespondsto a specificurn,andfor which a (ball) color probabilityis

definedfor eachstate.Thechoiceof urnsis dictatedby thestatetransition–matrixof the

HMM.

Furthermore,it shouldbe notedthat the ball colors in eachurn may be the same,and

the distinctionamongvariousurnsis in the way the collectionof coloredballs is com-

posed.Thereforeanisolatedobservationof a particularcolor ball doesnot immediately

tell whichurn it is drawn from.

2.1 Elements of an HMM

The above experimentconsistsof drawing balls from urnsin somesequence.Only the

sequenceof balls is shown to us. An HMM for discretesymbolobservationsuchasthe

urn–and–ballmodelis characterizedby thefollowing:

1. N, the numberof statesin the model. Although the statesarehidden,for many

practicalapplicationsthereis often physicalsignificanceattachedto the statesof

the model. Thus, in the urn–and–ballmodel, the statescorrespondto the urns.

Generally, thestatesareinterconnectedin suchaway thatany statecanbereached

from any otherstate.However, otherpossibleinterconnectionsof statesareoftenof

interest.In thefollowing individual statesarelabeledas
�
1 � 2 ��������� N � andthestate

at time t is denotedasqt .

2. M, thenumberof distinctobservationsymbolsperstate.Theobservationsymbols

correspondto thephysicaloutputof thesystembeingmodeled.For theurn–and–

ball experimentthe observation symbolsarethe colorsof the balls selectedfrom



theurns.We denotetheindividualsymbolsasV � �
v1 � v2 ��������� vM � .

3. T , thelengthof anobservationsequence.

4. O �	� O1O2 ����� OT 
 theobservationsequence,whereOt denotestheobservationat

time t.

5. ThestatetransitionprobabilitydistributionA � �
ai j � where

ai j � P � qt � 1 � j � qt � i 
 � 1  i � j  N

definestheprobabilityof beingin statej at time t � 1 giventhatwe werein statei

at time t. For thespecialcasewhereany statecanbereachedfrom any otherstate

in a singlestep,we have ai j � 0 for all i � j. For othertypesof HMMs, we would

have ai j � 0 for oneor more(i � j) pairs.

6. TheobservationsymbolprobabilitydistributionB � �
b j � k 
 � ,

b j � k 
 � P � Ot � vk � qt � i 
 � 1  k  M

definestheprobabilityof observingthesymbolOt � vk at time t giventhatwe are

in statej.

7. Theinitial statedistributionπ � �
πi � , in which

πi � P � q1 � i 
 � 1  i  N

definestheprobabilityof beingin statei at thebeginningof theexperiment(i.e.,at

t � 1).

It can be seenfrom the above that a completespecificationof an HMM requiresthe

specificationof two modelparameters,N andM, specificationof observation symbols,

andthespecificationof thethreesetsof probabilitymeasuresA, B andπ. Forconvenience,

λ �	� A � B � π 
 will beusedasacompactnotationto denoteanHMM.

Using the model,an observation sequenceO ��� O1O2 ����� OT 
 is generatedasfollows:

We start our experimentat time t � 1 by choosingone of the urns, accordingto the

initial probability distribution π, then we choosea ball, the observation symbol from

this urn. The stateandthe observation symbolat time t � 1 aredenotedasq1 andO1

respectively. After this we chooseanurn (maybethesameor a differentfrom theurn at

t � 1) accordingto thetransitionprobabilitydistributionA andagainselectaball (denoted

asO2) from this urn dependingon theobservationsymbolprobabilityb j � k 
 for thaturn

(state). The continuationof this procedureup to time t � T generatesthe observation

sequenceO ��� O1O2 ����� OT 
 .



2.2 The Three Problems for HMMs

Most applicationsof HMMs arefinally reducedto solving threemain problems.These

are:

Problem1: GiventheobservationsequenceO ��� O1O2 ����� OT 
 andamodelλ ��� A � B � π 
 ,
how doweefficiently computeP � O � λ 
 , theprobabilityof theobservationse-

quence,for agivenmodel?

Problem2: GiventheobservationsequenceO ��� O1O2 ����� OT 
 andamodelλ ��� A � B � π 
 ,
how do we choosea correspondingstatesequenceQ ��� q1q2 ����� qT 
 such

thatP � O � Q � λ 
 , thejoint probabilityof theobservationsequenceandthestate

sequenceis maximized?

Problem3: How do we adjusttheHMM modelparameterλ ��� A � B � π 
 so thatP � O � λ 

or P � O � Q � λ 
 is maximized?

Problem1 is theevaluationproblem,namely, givena modelanda observationsequence,

how do we computethe probability that the observation was producedby the model?

Problem1 can be viewed as one of scoringhow well a given model matchesa given

observationsequence.For example,if weconsiderthefire detectionproblemthesolution

of problem1 allows to makeanalarmdecision.

Problem2 is theonein whichweattemptto uncoverthehiddenpartof themodel.Typical

usesmightbeto learnaboutthestructureof themodel,to find theoptimalstatesequence

for agivenobservationsequence.

Problem3 is theonein which we attemptto optimizethemodelparametersto bestde-

scribehow a given observation sequencecomesabout. The observation sequencesto

adjustthemodelparametersarecalledtrainingsequencesbecausethey areusedto “train”

the model. This problemis the crucial onefor mostapplicationsof HMMs, becauseit

allowsusto createbestmodelsfor realphenomena.

2.3 Types of the HMMs

Oneway to classifytypesof HMMs is by thestructureof thetransitionmatrix A. In the

specialcaseof ergodicor fully connectedHMMs every statecanbereachedfrom every

otherstateof themodelin asinglestep.
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Figure 1: Two typesof HMMs

As shown in Figure1(a),for anN � 4 statemodel,wehave

A �
�������
a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

�������� with ai j � 0 for all 1 � i � j � 4

For someapplications,particularly the onediscussedhere,other typesof HMMs have

beenfoundto accountfor observedpropertiesof thesignalbeingmodeledbetterthanthe

standartergodic model. Onesuchmodelis shown in Figure1(b). This modelis called

a left–right–modelbecausetheunderlyingstatesequenceassociatedwith themodelhas

the propertythat thesystemstatesproceedfrom left to right astime increases.Clearly,

the left–right–typeof HMM hasthe desirablepropertythat it canmodelsignalswhose

propertieschangein time in a successive manner(e.g., increasingsensorsignalvalues

obtainedform ascatteringlight smokesensor).Thetransitioncoefficientshave theprop-

erty

ai j � 0 � j � i

Hence,notransitionsareallowedto stateswhoseindicesarelowerthanthatof thecurrent

one.Clearly, theinitial statedistributionπ � �
πi � is givenby

πi � �� � 1 � i � 1

0 � i !� 1



becausethestatesequencemustbegin in state1. Often,with left–right–models,additional

constraintsareplacedon thetransitioncoefficients.A constraintof theform

ai j � 0 � j � i � ∆i

is oftenusedto make surethat largechangesin stateindicesdo not occur. In particular,

for theexampleof Figure1(b), thevalueof ∆i is 2.

3 Realization

A discussionof thesolutionof thethreeproblemsof HMMs will exceedthescoreof the

paper. The solutionof problem3, the synthesisor training problem,is not necessarily

partof a detectionalgorithm. Theparametersof anHMM canbeviewedasparameters

of thedetectionalgorithmwhichhave to beadjustedby aprecedingtrainingprocedure.

Thesolutionof problem1, theanalysisproblem,will bediscussedlaterfrom thecompu-

tationaleffort point of view which is of someinterestasfar asthepracticalrealizationis

concerned.

3.1 The parameters of the HMM

We areusinga left–right–modelwith N � 10 states.Thenumberof distinctobservation

symbolsperstateis M � 15. Here,theobservationsymbolsrepresentcertainsensorsignal

values.Thelengthof anobservationsequenceequalsT � 12. We usea samplingrateof

0 � 2 Hz. Hence,theobservationlengthcorrespondsto a durationof 1 minute.

Theinitial statedistributionπ � �
πi � is givenaccordingto thechosenleft–right–modelby

a 10 " 1 vectorwith only onenonzerocomponent,i.e. π1 � 1. Theremainingparameter,

the transitionprobability distribution, representedby a 10 " 10 matrix, as well as the

observationsymbolprobabilitydistribution,representedby a10 " 15matrix,areadjusted

by acoupleof trainingsequences,i.e,weused30 trainingsequencestakenfrom testfires

of typeTF1,TF3,TF4,TF5andTF7.

3.2 Solution of Problem 1

A straightforward way to determineP � O � λ 
 is by enumeratingevery possiblestatese-

quenceof lengthT . ThereareNT of suchstatesequences.

Theprobabilityof theobservationsequenceO ��� O1 O2 ���#� OT 
 giventhestatesequence



Q ��� q1q2 �#��� qT 
 andthemodelλ is

P � O � Q � λ 
 � T

∏
t $ 1

P � Ot � qt � λ 
� bq1 � O1 
&% bq2 � O2 
'%�%�% bqT � OT 

Theprobabilityof suchastatesequenceQ canbewrittenas

P � Q � λ 
 � πq1 % aq1q2 % aq2q3 %�%�% aqT ( 1qT

The probability that the O andQ occursimultaneously, is the productof the above two

terms

P � O � Q � λ 
 � P � O � Q � λ 
 P � Q � λ 

Theprobabilityof O giventhemodelλ is obtainedby summingthis joint probabilityover

all possiblestatesequencesQ. Hence,wehave

P � O � λ 
 � ∑
all Q

P � O � Q � λ 
 P � Q � λ 

Fromthelastequationwe seethatthesummandinvolves2T ) 1 multiplications.Hence

summationover all possiblestatesequencesrequires � 2T ) 1
 NT multiplicationsand

NT ) 1 additions.Evenfor smallvalues,N � 10 andT � 12, this meansapproximately

2 � 3 % 1013 multiplications. Clearly, a moreefficient procedureis requiredto solve prob-

lem 1. Suchaprocedureexistsandis calledtheforwardprocedure.

Considertheforwardvariableαt � i 
 definedas

αt � i 
 � P � O1 � O2 �*������� Ot � qt � i � λ 

i.e., theprobabilityof thepartialobservationsequence,O1 � O2 �+�#���#� Ot , (until time t) and

thestatei at time t giventhemodelλ. We cansolve for αt � i 
 inductively, asfollows:

1. Initialization

α1 � i 
 � πibi � Oi 
 � 1  i  N

2. Induction

αt � 1 � j 
 �-, N

∑
i $ 1

αt � i 
 ai j . b j � Ot � 1 
 1  t  T ) 1 � 1  j  N

3. Termination

P � O � λ 
 � N

∑
i $ 1

αT � i 




Again, let us examinethe numberof multiplicationsinvolvedwith this procedure.The

initialization stepinvolvesN multiplications. The inductionsteprequiresN multiplica-

tions plus onefor theout of bracket b j � Ot � 1 
 term. This hasto be donefor 1  j  N

andfor 1  t  T , which amountsto � N � 1
 N � T ) 1
 multiplicationsin the induction

step. The terminationsteprequiresno further multiplications. Hencethe total number

of multiplicationsis N � N � N � 1
 � T ) 1
 . For N � 10 andT � 12 we needabout1200

computationsfor the forwardprocedureascomparedto 2 � 3 % 1013 requiredby thedirect

computationof P � O � λ 
 .
3.3 The Algorithm

The algorithmwe usedworksasfollows: At eachdiscretetime instantt (e.g.,multiple

integerof 5 seconds)anobservationsequenceO is takenfrom thesensorsignalincluding

thecurrentsignalvalueaswell asthe11 precedingsignalvalues.Thenthea posteriori

probabilityP � O � λ 
 is calculatedaccordingto theforward–procedure.

4 Experiments and Results

In thissectionwepresentsomeresultstakenfrom acomputersimulationof thealgorithm

describedabove. The following plots show the output signal s � t 
 of a scatteringlight

smokesensorandthea posterioriprobabilityP � O � λ 
 plottedas

P /0� O � λ 
 � min 1 150��) log 2 P � O � λ 
�354
Theperformanceof thesystemin caseof a testfireTF1 is in thefollowing plot.
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Figure 2: Sensorsignals � t 
 andthe logarithmof thea posterioriprobabilityP � O � λ 
 in

caseof testfireTF1



Obviously, P � O � λ 
 is maximum(or equivalent:P / � O � λ 
 is minimum)about100seconds

afterthesmokesensorsignals � t 
 leavesthesteady–statevalue.

Figure3 shows the preformanceof the systemin caseof a smolderingfire, i.e. testfire

TF2. Here,themaximumof P � O � λ 
 is reached60 secondsafterthesmokesensorsignal

s � t 
 leavesthesteady–statevalue.
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Figure 3: Sensorsignals � t 
 andthe logarithmof thea posterioriprobabilityP � O � λ 
 in

caseof testfireTF2

Figure4 shows the preformanceof the systemin caseof a slowly developingfire, i.e.

testfireTF7.
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Figure 4: Sensorsignals � t 
 andthe logarithmof thea posterioriprobabilityP � O � λ 
 in

caseof testfireTF7



Again, themaximumof P � O � λ 
 is reached60 secondsafterthesmoke sensorsignals � t 

leavesthesteady–statevalue.

Finally, in the last simulationpresentedherewe usedan artificial burst signal. Signlas

likethisaremostunlikely to occurin realfire situtations,but may, for example,occurdue

to electromagneticinfluences.
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Figure 5: An artificial burstsensorsignals � t 
 andthelogarithmof thea posterioriprob-

ability P � O � λ 

Obviously, themaximumvalueof P � O � λ 
 (theminimumvalueof ) log � P � O � λ 
#
 ) ismuch

smaller(greater)ascomparedto the last threeexamples.Note,a classicalthresholdde-

tectorwill reachits alarmconditionin caseof theshown artificial burstsignal.

5 Conclusion

In this paperwe have derived a new approachfor fire detectionalgorithms. The key

elementof our approach,which appearsto bequiteuseful,is a Hidden–Markov–Model.

To be moreprecise,we useda left–right–model.Simulationstudieshasbeenpresented

which show the ability to improve detectionfeaturesin comparisionwith the classical

thresholddetector.
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